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1. Phys. A: Math. Gen. 24 (1991) 911-984. Printed in  the UK 

Reduction and exact solutions of the Navier-Stokes equations 

W I Fushchich, W M Shtelen and S L Slavutsky 
Institute of Mathematics, Repin Street 3, Kiev 4, USSR 

Received 5 March 1990 

Abstract. We Construct a complete set of  6( 1,3)-inequivalent ansitze of codimension 1 
far the Navier-Stakes (NS) field which reduce the NS equations to systems of ordinary 
differential equations (ODE). Having solved these ODES we thereby obtain solutions of the 
NS equations. Formulae of group multiplication of solutions are given. Several non-lie 
ansitre are discussed. 

1. Introduction 

The NS equations 

SU 

Sf -+ (u .V)U - A u + V p  = O  d i v u = O  (1.1) 

where @ =  -\-, r , f r l= { . ' ,  .z, ??'! is !hC ve!o&y field of 2 fi.id, p = p ( r )  is &p p:pss.rp, 
x = (1, x) E R ( 4 ) ,  V = (J /JX.} ,  a = 1,2,3, A is Laplacian, are basic equations of hydrody- 
namics which describe motion of an incompressible viscous fluid. The problem of 
finding exact solutions of nonlinear equations (1.1) is an important but rather compli- 
cated one. Considerable progress in solving this problem can be achieved by making 
use of a symmetry approach. Equations (1.1) have non-trivial symmetry properties; it 
is well known (see, e.g. Birkhoff 1950) that they are invariant under the extended 
Galilei group &(l,  3) generated by operators 

a 
' J l  a Jx, 

J z- 
a a -- 

where J,. -d/Ju", J p =  J/Jp. Recently it was shown (Ovsyannikov 1978, Lloyd 1981) 
that the maximal, in the sense of Lie invariance algebra, of the NS equations (1.1) is 
the direct sum of eleven-dimensional A6(1 ,3)  (1  2 )  and infinite-dimensional algebra 
Am with basis elements 

Q = f " J o + f " J u ~ - x , j " J ,  R = g J ,  (1.3) 

where f "  = f " ( t )  and g = g ( l )  are arbitrary differentiable functions of 1;  dot means 
differentiation with respect to t. 

0305-4470/91/050971+ 14503.50 0 1991 IOP Publishing Ltd 971 



972 W I Fushchich er a/ 

In this paper we systematically use symmetry properties of (1.1) to find their exact 
solutions. In section 2 we describe the complete set of & l ,  3)-inequivalent ansatze 
of codimension 1 

u"(r, x)  = f " " ( x ) + o h ( w ) + g " ( x )  P ( X )  = F ( x ) d w )  (1.4) 

where the functionsfah, g" and F, and new variable w = w ( x )  are determined by means 
of operators of three-dimensional subalgebras of AG(l ,3)  (1.2). We consider three- 
dimensional subalgebras of A6(1 ,3)  because a n  ansatz of the form (1,4), invariant 
under such a subalgebra, reduces (1.1) to a system of ODE immediately. As a rule 
reduced systems of ODE can be solved by a standard method. (In most cases we find 
the general solutions of these reduced systems of ODE). Ansatze of the type (1.4), 
which are obtained by means of Lie symmetry operators, we shall call Lie ansatze. 
The method of finding exact solutions of PDE used here is based on Lie's ideas of 
invariant solutions and it is described in full detail in Fushchich e$ af (1989). 

Starting from solutions of the reduced systems of ODE (which are, of course, 
solutions of the NS equations) one can construct multiparameter families of solutions 
for the NS equations. To do this one has to use formulae of group multiplication of 
solutions which are given at the end of section 2. 

In section 3 we consider some non-Lie ansatze for the NS field. These ansatze 
cannot be obtained within the framework of the local Lie approach used in section 2. 

2. &1,3)-inequivalent ansatze of codimension 1 for the NS field and exact solutions of 
the NS equations (1.1) 

Let (Q,)=(Ql,  QZ, Q,) be a three-dimensional subalgebra of A 6 ( l ,  3) (1.2). It follows 
from (1.2) that the general form of operator Q, is 

Q,=.$~(x)J,+q7P(u)J".+;,(P)J, (2.1) 
- 

where U = 0,3, J o =  J / J r ;  .$", qp, 6, are linear functions of x, U, p .  The explicit form of 
an ansatz (1.4) is determined as the solution of the following equations 

. $J (x )J ,w(x )  = O  

QJU" - f " " x ) ~ h ( w ) - g u ( X ) l  = o  (2.2) 

Q,[P - F ( x ) ~ ( w ) l  =O. 

Equations (2.2) can be solved rather easily. All three-dimensional 6(1,3)-inequivalent 
subalgebras of AG(l .3)  are found in Fushchich er a/ (1985) and Fushchich and 
Barannik (1989) with the help of the method developed by Patera er al (1975). In table 
1 we list these three-dimensional subalgebras and give corresponding invariant ansatze 
of the form (1.4) obtained as solutions of equations (2.2). 

In this tablef; g, h, p are differentiable functions of corresponding invariant variable 
0; a # 0 is an arbitrary constant. 
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Table 1. 6(l, 3)-inequivalent ansitre of codimension 1 for the NS field. 

N Algebra Invariant variable w Ansatz 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

p = v ( o )  
. ' = f + / ( w ) , u ' = g ( o ) , u ' = h ( w ) ,  
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Let us substitute ansatze from table 1 into the NS equations ( 1 . 1 ) .  As a result we 
obtain the following systems of ODE: 

1". 

2". 

3". 

4". 

5". 

6". 

IO. 

8". 

9". 

lo". 

11". 

17.0, 

13'. 

14'. 

g + h f - f = O  h g - g = O  

f h  + 2 f =  0 g h + 2 g = 0  

1 + hf -f = 0 

g - 2 h f -  47 = 0 

h = O .  

( a f  - h ) f - 2 ( a 2 +  l)y+a+ = O  

( a f  - h ) h - 2 ( a 2 + l ) h - + + f = 0  

- f ( h  - a g )  + g - (a'+ I ) j =  0 

1 - h (  h - a g )  - + - (a2+ l ) h  = 0 

g h - g = O  

hg+2g  = 0 

1 .  3 .  .. 
f 2 - g 2 + w f f + - ( p = - f + f  

w w  

1 .  
wfh = h+- h 2 f  + of= 0. 

0 

, 1 ,  3 .  f 2 - g 2 +  off +- q =- f +j: 
o w  

h i -  h +  + = 0 

1-2hh-4h-2+=0 h = O .  

h=o .  

hh -h++=O h=O. 

1 - 2 h h - 4 h - 2 6  = O  

(a f  - h ) g - 2 ( a Z +  1 ) g = O  

a f - h = O .  

- g ( h  - a g ) + a + - ( a 2 +  l ) g = O  

h -ag=O. 

3 
2fg + wfg = - g + g 

w 

3 .  .. 2fg + wfg = - g + g 
W 

1 .  
l+wfh = h+- h 2 f + w j = O  

f f - g ( f + w f ) + +  = 2 ( 1  + w ) f  + w ( Z f + w f )  

fg - g ( g +  w g )  - w+ = 2(1+ w ) g  + w ( 2 g +  w g )  

f h  - g ( h  + w h )  = 2( 1 + w ) h  + w ( 2 h  + w h )  

- f (  f '+g ' )+  (f - a g ) f -  (p + + = 2(- f  -f+ ng+(a2+ 1 ) j : )  

- (f - a g ) g +  a+ = 2 [ g +  g +  ai- (a2+ 1)g] 

- fh+2(  f - a g ) h  = h - 4 h + 4 ( a 2 + l ) h  

w 

f - ( g + w g ) = O  

f-ag=O. 

- f - g2+ w f f  - w 2 h f -  2 q  + w+ = w (- f + wf ) + w3(2f+ w j )  

fg - w2hg = w ( - g + w g )  +0 ' (2g  + w g )  

f ( - h  + w h )  -w'hh - w 2 +  = h - w h  + w'h+  w'(2h + oh) 

f - w h  =O.  

g +  wg - 2 f ( g +  w g )  = -4 (2g+wg)  

- ( f h  + wh)+2wfh  = 4 ( h  + w h )  

f * -g2+2wf f+2+ = 4 ( 2 f + w f )  

f + wf = 0. 
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IS". f '- g z + 2 0 f i +  24 = 4 ( 2 f + 0 f )  

g + w g  - 2 f ( g +  w g )  = -4(2g+ og) 

-(fh + w h ) + 2 w f h  + h = 4 ( h + w h )  

-$(h  + w h ) + h h + d  = h 

-f(h +oh)+ hh ++ = h 

-$ (h  + m i )  + hh = 

- f ( h  +oh) + hh + 9 = h 

f + of++ = 0. 

16". -$(f+ w f i +  hi=?  -f(g + w g )  + hg = g 

I; =fj. 

h + l  =o. 
17". -f( f + w f ) +  h i +  a g  =f - i ( g  + o g )  + hg +g = g 

18". f (  f - of) + h f = f  f(g -wg)+ hg = g  

h + 2 = 0 .  

194 -f( f +of) + h f = f  f (g-wg)  + hg = g 
h + l = O .  

Equations 1°-19"in (2.3) correspond to that of ansatze in table 1; dot means differenti- 
ation with respect to corresponding o. 

Equations lo- IO"(2.3) can easily be solved and theirgeneral solutions are as follows: 

1". f = s  g = c2 h = c, 9 = 9 ( w )  

(here and in what follows, c with a subscript denotes an arbitrary constant; p = 9 ( w )  
means that 'p is an arbitrary differentiable function of 0). 

c, = 0 

h = c3 9 = c,. 

c, = 0 

h = c, $0 = C6. 

(2.4) 
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5". 

6". 

7". 

8". .f = 

W I Fushchich er al 

C) = 0 

C) # 0 

cqw + cs c3 = 0 

h = c3 'P = c6 

c, + 0 
cs c ,+c,  exp(-+c3w)+- w 

i ( c , +  c2w+ic5uJ2+&4w)) C) = 0 

- exp(-fc3w)+ c5 c, Z 0 

[ c,w + cs C) = 0 

h = c) 'P=fw+C,  

aw 
f = [  c l e x p ~ ~ a 2 + 1 1 ) + c 2 - 2 ~ a 2 + * ~ c  C f O  

aw + c,w t c2 c = o  
2[2(ru2+ 111' 

C Z O  
g =  

w 
+ C 5 .  

'P = 2 ( a 2 +  1) 
h = a f - c  

2 c 2 ( a 2 + l )  a w 2  +? c (5- c2 ..) + [: ( w  -+) +,,I +q  c # 0 

) c = O  a w 4  C? c4 +- w3+- w 2 + c , w + c 2  
( U 2 + 1 ) - 1 ( 2 4 ( a 2 + l ) 2  6 2 

C Z O  
- a w  

C(U2+1) 

2 ( a 2 + 1 )  
a 

"2+ CJ" + c, c = o  
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p = (  

Reducfion and exacf solutions of "&-Stokes equations 977 

2 2c,c, c:+1 
c, In o ---__ + cs 

w 2w2 

fc:w2+2c,c2 In o-,+c, 

c = - 1  

c=O. 4 

h = <  

lo". 1; g and p are the same as in the previous case 9", 

e, e*l"+c2eA2'" -> aZ(1 +c)  

e*"(c,+c,o) -= a y 1  + c) 

e*"(c, c o s p o + c 2 s i n p w )  

4 

c2 
4 

C 2  
-< ay1 + c) 

+ c,wy + c, cf2,0 F 2(2 - c) 

11". c - 0  

w2 [ $1. w --+c,w2+cq c = 2 .  
4 

For 11" (2.3) we did not find solutions. A particular solution of 12" (2.3) is 

A particular solution of 13" (2.3) is 

13". f = c l  g = c2 h = O  *=-; ( c2  I+  c2  2 ) .  (2.4) 
Consider system 14" (2.3). The last equation of 14" (2.3) immediately gives 

f = c/w (2.5) 
(as before, c is an arbitrary constant). Substituting (2.5) into the remaining equations 
of 14" (2.3) we get 

(2.6) 
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and 

4 w i + ( w + 4 - 2 c ) i + f h = O .  (2.7) 
Equation (2.6) can be easily integrated and the result is 

In particular, when c = 0, the general solution of equation (2.6) takes the form 

Equation (2.7) is in itself an equation for a degenerate hypergeometric function and 
it can be rewritten in standard Whittaker form 

4x2w-(x2-4kx+4m2- 1)w = o  (2.10) 

where w = w ( k ,  m, x); k, m are parameters, by the substitution 

(2.11) 

When c = 0, the substitution 
w 

h(w) =e-'&,( 7) T = -  (2.11) 

Ti, + z, - Tio = 0. 

8 

reduces (2.7) to the modified Bessel equation of null order, that is 
" 

(2.12) 

Summarizing results (2.5)-(2.12) we can write down the general solution of 14" (2.3) 
as follows 

C 

0 
14". f =- 

(We continue to numerate solutions of reduced NS equations 1O-19' (2.3) as no (2.4), 
where no = 1"-19" indicates the corresponding ansatz of table 1.) When c = 0 we get 
from 14' (2.4) the following particular solution of 14" (2.3) 

+- C, 14O". f = o  g=--e-"/4 w E2 w 

0 e-Y/4 

- y 2  dy+c3. 

(2.4) 

where io is modified Bessel function satisfying equation (2.12) 
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Consider system Is" (2.3). The last equation in it gives 

c l  
0 2  

f =---, 

The rest equations of 15" (2.3) take the form 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Equations (2.14), (2.15) can be easily integrated and the result is as follows 

C Y  
X' /2e -x /2dX+C2 (2.17) 

0 W 

c2 1 .='I g2(y)dy----w. 
2 2w 8 

0 

(2.18) 

Equation (2.16) is reduced to the Whittaker equation (2.10) by the substitution 

Note, when c = 3 ,  function w ( 0 ,  -$,:) is reduced to the modified Bessel function 
2-314(o/4). The general relation is (Bateman and Erdelyi 1953) 

w ( 0 ,  m, x )  = J;; .5,,,(x/2). (2.20) 

So, we can write down the general solution of reduced NS equations 15" (2.3) in the form 

( 4 ' 4 ' 2  

(2.4) 

c2 1 +- =' g 2 ( y )  dy ----U 2 2 0  8 

Y 

where w satisfies the Whittaker equation (2.10). 
Consider system 16" (2.3). The two last equations of it give rise to 

(2.21) 
cw q==-+c , .  
2 

h = c  

Taking into account (2.21) we can rewrite the rest equations of system 16'(2.3) as 
follows 

/+(io - c ) f + $  f = 0 
6 :A(L., I \ Z w  - ,I,++LG.=O. L 1 6  ' 2 6  

(2.22) 

(2.23) 
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By substituting 
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f ( w )  = F ( 7 )  7=iw--c 2 

into (2.22), we obtain the following equation: 

d2F ' d F  
-+27-+2F=O. 
d 7' d.r 

(2.24) 

(2.25) 

The general solution of (2.25) is 

F(r )=e-" (c2+c3  ('ey'dy). (2.26) 

Summarizing results (2.21)-(2.26) we write down the general solution of equations 
16" (2.3): 

( 0 / 2 ) k U  

16". f =ex*[ -( ;- c)']( c2+ c3 ey2dy) 

( Y / Z ) - c  

g =exp[ -(:- .)'I( c,+ c5 ( eY2dy) 

cw 
Q = - + C ,  

2 
h = c  

In the same way we find solutions of reduced equations 17"-19" (2.3). The solutions 
are as follows: 

17". a = l  (2.4) 
f = g = ( ; w - c ) - ~ / ' e x p [ - ~ ( ~ w - c )  2 Iw(-' I ' ( " w - c ) 2 ]  

1 2 . 4 , l  2 

h = -  w + c  *p =;cw - w2+c, 

where w(. ,  ., .) is solution of the Whittaker equation (2.10). The above solution 17" 
(2.4) is a particular solution of equations 17" (2.3) with a = 1. When LY is an arbitrary 
constant, the general solution of 17" (2.3) has the form 

(2.4) 
3 1 3  2 5 I 1 3  17"'. = ( T w  - c ) - ' / 2  expl-d-iw - c )  I W [ - Z . ~ , ~ ( T W - C ) ~ ]  

1 2 h = -  w + c  Q = I c w - w  + c ,  

j + ( $ W  - c ) f + $ f -  a g  =o.  

f =  (io - c ) - ' / 2  exp[-i-b(3w - c ) ' ] w [ - - ~ i j , ~ , d i w  - c )  I 
g=(& - ~ ) - " ~ e x p [ - ~ ( ~ w - c ) ~ ] w [ - ~ , i , j ( ~ ~ - c ) ~ ]  27 I I 5  

q =icw 5 -3w2+ e,. 

and f satisfies the ODE 

The general solution of 1 8 O  (2.3) is 

(2.4) 21 I I S  2 18". 

h = - 2 w + c  
The general solution of 19" (2.3) is 

19". f = ( t o - ~ ) - ' / ~ e x p [ - d ( ; w - c ) ' ] w [ - ~ , a , f ( ; w  -c) ']  (2.4) 
g = ( i w - c ) - ' / 2  3 2 5 I 1 3  2 

e v - &  - c )  I w C - T ~ , Z , J ( T W - C )  I 
3 2 h=-w+C qJ = TCW - w + c,  . 

In 17"-19" (2.4) w(. ,  ., .) is an arbitrary solution of the Whittaker equation (2.10). 
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Remark 1. The solutions of reduced NS equations 1"-19"(2.3) given in 1"-19"(2.4) 
should he considered together with the corresponding ansatze of table 1; then one gets 
solutions of the NS equations (1.1). 

The solutions of the NS equations (1.1) obtained above can be used in a basic way 
to construct multiparameter families of solutions. A procedure for generating new 
solutions from a known one is based on the well known fact of Lie theory according 
to which symmetry transformations transform any solution of a given differential 
equation into another solution. For example, if transformations 

(2.26) 

where the 0 are parameters, U =column( u'u' ,  . . . , U'), R(x, 8) is a non-singular matrix 
k x k ,  R(x,O)=l,f,, B (column) aresome smooth functions,f,(x,O)=x,,, B(x,O)=O 
leave considered P D E ~  invariant, then the function 

(2.27) 

will be a new solution of the equation provided u,(x) is any given solution. Formulae 
like (2.27) we call formulae of group multiplication of solutions (CMS) (Fushchich 
er a1 1989). So, to construct the formulae of GMS for the NS equations one has to find, 
first of all, the final transformations generated by symmetry operators (l .2),  (1.3) and 
then, according to (2.27), construct the formulae. The results of this is given in the 
table 2. 

Note that in 1-11 p'(x ' )=p(x)  and therefore p, ,(x)=p,(x') .  In this table So, 8.. 
ma, e,, p, E ,  K are arbitrary constants, a=(u:+a:+a:)"'; f and g are arbitrary 
differentiable functions of 1. The formulae of G M S  stated above allow to construct new 
solutions u,,(x) of the NS equations (1.1) starting from a known one uI(x). 

U ~ X )  = R-Yx, e)ru,(x') - ~ ( x ,  e) ]  

Table 2. Final symmetry transformations and the corresponding formulae of OMS for the 
NS equations (1.1). 

Final transformations 

N operator x - x '  u ( x ) -  " ' ( X ' )  Formulas of  CMS 
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Remark 2. It will he noted that operator Q given in (1.3) generates transformations 
(N 12 in table 2) which can be considered as an invariant transition to a frame of 
reference which is moved arbitrarily: x,~= ~/(f). 

W I Fushchich et a/  

Let us give some examples of the application of formulae of GMS. Having applied 
formulae 5-7 of table 2 to solution 16" (2.4) we get a new multiparameter solution for 
the NS equations (1.1) 

u(x) =F Ji [ eC2[ a( a, + a2 1'e ' 'ds)  + b (  a,+a, jT es2dr)]  + c )  

(2.28) 

where a,, . . . , as are arbitrary constants, a, b, c are arbitrary orthonormal constant 
vectors 

a 2 =  b2= c2= 1 a . b = a , c =  b.e=O. (2.29) 

Further application of the formulae of GMS N8-10 to (2.28) gives rise to the following 
solution of the NS equations 

u(x) =L Ji [ e-''[ a (  a,+a, l y e s 2  ds)  + b(  a,+ a4 ['eA2 ds)] t.) - 0 

C . ( X + B f )  "' - 1  
2JT 

(2.30) 

where the B are arbitrary constants, the rest are the same as in (2.28). 
The procedure of generating solutions by means of symmetry transformations can 

be continued until one gets a n  ungenerative family of solutions, that is the family 
which is invariant (up to transformation of constant parameters) with respect to the 
total GMS procedure. Without doubt, the reader can carry out this procedure by analogy 
with the above examples, for any solution 1"-19" (2.4) of the NS equations. 

3. Examples of non-Lie ansatze for the NS field 

Ansatze collected in table 1, of course, do not exhaust all possible ansatze which reduce 
the NS equations. Here we consider several examples of ansatze which do not have 
the form (1.4). More complete consideration of this question will he given in our next 
paper. 

Because all ansatze obtained within the framework of the Lie approach have form 
(1.4), it is natural to call other ansatze non-Lie. Our first example of this is the well 
known ansatz 

U=vQ (3.1) 
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where p = ~ ( x )  is a scalar function. If p satisfies the Hamilton-Jacohi and Laplace 
equations 

V P r + ( V P ) 2 + P = 0  A p = O  (3.2) 

then the function U (3.1) automatically satisfies the NS equations (1.1). It is an  example 
of non-local component reduction. 

Ansatz 

U = ap( 1, b.x, c .  x) (3.3) 

where a, b, c are constant vectors satisfying (2.29), reduces (1.1) to the two-dimensional 
heat equation 

d2 a' 
am: a& 

p r - A z ( ~  = O  2 -  o1 = 6 . x  0 2  = C'X. (3.4) A =-+- 

Ansatz 

U = xp(x) P = P b )  (3.5) 

reduces equations (1.1) to the system of PDE for two scalar functions p and p 

x ( v , + A v ) + V ( ~ + P ) = O  p + ( x . V ) p  =o. (3.6) 

New ansatze and solutions of the NS equations (1.1) obtained within the framework 
of conditional symmetry will be given in our next paper. The concept and the term 
conditional invariance was firstly introduced by Fushchich (1987) (see also Fushchich 
and Nikitin 1987). Further development and applications of this concept are contained 
in Fushchich et a /  (1989), Fushchich and Serov (1989), Levi and Winternitz (1989). 

Let us make some concluding remarks. It will he noted that the question of what 
spin is carried by the NS field has a rather strange answer (Fushchich 1983): the NS 

field carries not only spin 1 but all possible integer spins s = 0, 1,2, . . . . It is due to 
the fact that the space of solutions of the NS equations can be decomposed into an 
infinite direct sum of subspaces invariant under operators Sob = u2d.h - ubdua from 
algebra A0(3 ) ,  and these subspaces are not invariant under operators G, from (1.2) 
because of the unboundedness of operators a,.. 

In hydrodynamics the linearized NS equations are sometimes used 

U, - Au = 0 div U = 0. (3.7) 

The maximal invariance algebra of (3.7) is the seven-dimensional Lie algebra with 
basis elements 

a, a. D = 2 t a , + x a a ,  I = u"a.. 

J.,=x.a,-x,a,+u"a,h-uba,.. 
(3.8) 

It should be pointed out that (3.7) are not Galilei invariant and therefore they fail in 
adequately describing real hydrodynamics processes. 
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